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Using ECIS (electric cell-substrate impedance sensing) to monitor the impedance of vertebrate cell
monolayers provides a sensitive measure of toxicity for a wide range of chemical toxicants. One major
limitation to using a cell-based sensor for chemical toxicant detection in the field is the difficulty in main-
taining cell viability over extended periods of time prior to use. This research was performed to identify
cell lines suitable for ECIS-based toxicity sensing under field conditions. A variety of invertebrate and
vertebrate cell lines were screened for their abilities to be stored for extended periods of time on an
enclosed fluidic biochip with minimal maintenance. Three of the ten cell lines screened exhibited
favorable portability characteristics on the biochips. Interestingly, all three cell lines were derived from
ectothermic vertebrates, and the storage temperature that allowed long-term cell survival on the
enclosed fluidic biochips was also at the lower end of reported body temperature for the organism,
suggesting that reduced cellular metabolism may be essential for longterm survival on the biochip.
Future work with the ectothermic vertebrate cells will characterize their sensitivity to a wide range of
chemical toxicants to determine if they are good candidates for use in a field portable toxicity sensor.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to protect drinking water from the threat of acciden-
tal or intentional chemical exposures is becoming a growing need
in both the military and civilian sectors. A wide array of analyte-
specific assays exists for detection of chemicals in water (Kelly
et al., 2008; Pancrazio et al., 1999; Reardon et al., 2009; States
et al., 2003), but a large number of assays would be needed to de-
tect all possible chemicals, and unknown toxic chemicals would
still escape detection. To meet this growing need, a variety of tox-
icity sensors have been developed that can detect a broad range of
chemical contaminants (Curtis et al., 2009a; Eltzov and Marks,
2010; Iuga et al., 2009, and O’Shaughnessy et al., 2004). One toxic-
ity sensor that shows great potential for low cost, maintenance-
free detection of many chemical contaminants is ECIS sensing of
vertebrate cells, which was first described by Giaever and Keese
(1992), and further developed by Curtis et al. (2009a,b), Brennan
et al. (2012). A change in cellular impedance has been shown to
be a sensitive rapid indicator of viability and cytotoxicity (Giaever
and Keese, 1993; Keese et al., 1998; Xing et al., 2005, 2006), and
thus is appropriate for toxicity sensing of drinking water.

One major challenge with using mammalian cells as toxicity
sensors is the inability to maintain cell viability under field condi-
tions for extended periods of times until the sensors are used for
water testing. Mammalian cells generally require frequent feed-
ings, a 37 �C heated environment, and exogenously supplied CO2.
A portable cell maintenance system was developed to support
mammalian cell health on the ECIS sensors in field conditions,
but the system had limitations including high cost, large size,
and sufficient consumables for only 9 days of storage time (Curtis
et al., 2009b). Even though some mammalian cells may have useful
toxicity response characteristics, they are more difficult to main-
tain, which has hampered the development of field-usable cell-
based toxicity sensors (DeBusschere and Kovacs, 2001; Pancrazio
et al., 2003, 2004).

Utilizing cell lines from non-mammalians is a potential way to
circumvent the maintenance issues arising from using mammalian
cells. The recent use of the RTgill-W1 cell line, which is derived
from the rainbow trout gill (Bols et al., 1994), illustrates this (Bren-
nan et al., 2012). RTgill-W1 cells are able to evaluate the toxicity of
a wide range of chemicals in less than an hour, and remarkably, the

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tiv.2013.07.007&domain=pdf
http://dx.doi.org/10.1016/j.tiv.2013.07.007
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cells remained viable for 78 weeks without changing the medium
of the biochips (Brennan et al., 2012). Thus using RTgill-W1 cells
greatly extended the storage capabilities of the ECIS-based toxicity
sensor over using mammalian cell lines. Rainbow trout cell lines,
however, become stressed at 26 �C and die rapidly at 30 �C (Bols
et al., 1992). This may limit the utility of this cell line under certain
field conditions.

In an effort to broaden the field capabilities of the ECIS-based
toxicity sensor, additional cell lines were examined for their stabil-
ity on the biochips. Ten cell lines from insects, fish, amphibians,
reptiles, and mammals were evaluated in this sensor for their abil-
ity to remain as confluent monolayers on fluidic biochips under a
broad range of temperatures without media changes or exoge-
nously supplied CO2. Two cell lines from reptiles and one from fish
were identified as superior because they increased the thermal tol-
erance of the sensor.
2. Materials and methods

2.1. Tissue culture

Ten cell lines were evaluated in the current study. Table 1 lists
the cell lines and culture conditions. All cell lines chosen have been
characterized fully in published literature, except for the newly
isolated WECF11e cells that are described in this paper for the first
time.
Table 1
Cell lines used and culture conditions tested.

Cell line designation: tissue origin and species
name

Source & reference for each
cell line

Medi

SF9: ovary cells from Spodoptera frugiperda ATCCa CRL-1711 Grace
VA)

(Vaughn et al., 1977)

HvAM1: pupal ovary cells from Heliothis
virescens

Dr. C Goodman, USDA Ex-ce
inacti

(McIntosh and Ignoffo,
1983)

Sua1B: larval cells fromAnopheles gambiae Dr. J Bloomquist, U of
Florida

Schne
10% h

(Dimopoulos et al., 1997)

S2: embryonic cells from Drosophilia
melanogaster

R690-07 (Life
Technologies, NY)

Schne
10% h

(Schneider, 1972)

FHM: connective tissue/muscle epithelial cells
from Pimephales promelas

ATCC CCL-42 Eagle
Techn

(Gravell and Malsberger,
1965)

ICR134: embryonic epithelial cells from Rana
pipiens

ATCC CCL-128 50% L

(Freed and Mezger-Freed,
1970)

GL-1: lung epithelial cells from Gekko gecko ATCC CCL-111 Adap

(Cohen and Clark, 1968)

IgH-2: heart epithelial cells from Iguana iguana ATCC CCL-108 Adap

(Clark et al., 1970)
WECF11e: fin epithelial cells from Sander

vitreus
Dr. N. Bols, U of Waterloo
described here

Leibo

15P-1: Sertoli cells from Mus musculus ATCC CRL-2618 Adap
(Paquis-Flucklinger et al.,
1993)

a American type culture collection (ATCC; Manassas, VA).
b All media purchased from Lonza (Walkersville, MD) unless otherwise noted.
c Room temperature is 25 �C.
d Can also be grown at room temperature.
2.2. Isolation and characterization of WECF11e cells

The epithelial-like cell line that is designated WECF11e (Wall
Eye Caudal Fin (fish #11) Epithelial) was derived from a caudal
fin of a juvenile walleye (Sander vitreus). The walleye (provided
by Dr. J.S. Lumsden (University of Guelph)) was from the White
Lake Fish Culture Station, Ontario Ministry of Natural Resources,
ON, Canada. The original fish stocks were from Lake Ontario, ON,
Canada. Primary cultures were established by explant outgrowth
of fin fragments. The growth medium was Leibovitz’s L-15 medium
(L-15; Thermo Scientific HyClone, Logan, UT) supplemented with
10% fetal bovine serum (FBS; Sigma–Aldrich, St. Louis, MO),
200 U/mL penicillin (Thermo Scientific HyClone, Logan, UT) and
200 mg/mL streptomycin (Thermo Scientific HyClone, Logan, UT).
Briefly, the caudal fin was removed from an anesthetized fish
and excised into small pieces. These fin fragments were rinsed
three times with Dulbecco’s Phosphate Buffered Saline (DPBS) be-
fore being plated in 25 cm2 culture flasks. Over several weeks cells
migrated out from the fragments onto the plastic tissue culture
surface. These primary cultures were composed of both fibroblastic
and epithelial-like cells, with the latter type being more predomi-
nant. When the flasks were confluent, the cells were passaged.
With continued growth and passaging of the cultures at 20 �C in
L-15 with 5% FBS, nearly all the cells of the culture had an epithe-
lial-like morphology. WECF11e proliferated in cultures incubated
at temperatures from 14–32 �C (data not shown); in this regard
they were similar to cell lines developed from walleye in the
ab Temperature
(�C)

CO2

’s medium with 10% heat inactivated FBS (Mediatech Inc., 28 No

ll 420 medium (Sigma-Aldrich, MO) with 10% heat
vated FBS

Room
temperaturec

No

ider’s Drosophila medium (Life Technologies, NY) with
eat inactivated FBS

Room
temperature

No

ider’s Drosophila medium (Life Technologies, NY) with
eat inactivated FBS

28 No

’s minimum essential medium (EMEM) in Hanks’ BSS (Life
ologies, NY) with 10% FBS

Room
temperature

No

eibovitz’s L-15 medium, 40% distilled water, and 10% FBS Room
temperature

No

ted to grow in Leibovitz’s L-15 medium with 15% FBS Room
temperature

No

ted to grow in Leibovitz’s L-15 medium with 10% FBS Room
temperature

No

vitz’s L-15 medium with 5% FBS 26 No

ted to grow in Leibovitz’s L-15 medium with 10% FBS 32d No
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20th century but are no longer available (Kelly et al., 1980; Wolf
and Mann, 1980). Monolayer cultures of WECF11e were stable (lit-
tle change in morphology and no cell detachment) when incubated
at 4 �C for over 3 months without medium changes. WECF11e has
been passaged over 30 times and been cryopreserved successfully.
These features made WECF11e a promising candidate for use in the
ECIS-based toxicity sensor.

2.3. Cell seeding and storage on open well ECIS chips

A variety of adhesion substrates were evaluated with each cell
line to determine the preferred substrate (Table 2) that would
facilitate uniform cell attachment to the gold electrodes on open
well ECIS chips (#8W10E; Applied BioPhysics, Troy, NY). Adhesion
substrates were prepared according to manufacturers’ instructions.
Prior to being seeded with cells, 200 ll of one of the substrate solu-
tions [laminin (50 lg/ml), fibronectin (50 lg/ml), collagen I (50 lg/
ml), collagen IV (50 lg/ml), poly-D-lysine (50-200 lg/ml), gelatin
(0.2% solution), or concanavalin A (0.8-3.2 mg/ml)] was added to
the wells of each chip, incubated for 1–2 h, and washed with
appropriate growth medium.

Each cell line was seeded at a specific cell density (FHM cells at
6 � 105 cells/well and all other cell lines at 1 or 2 � 105 cells/well),
with media replacements done 3� a week. The seeded chips were
stored for a two-week period at the culture temperatures indicated
in Table 1, during which time the impedances were recorded as
indications of the cellular monolayer integrity. A cell monolayer
was determined to be stable over the two-week storage period if
the impedance values did not decrease more than 20%, and if the
morphology of the cells did not change substantially as visualized
by phase contrast microscopy. The 20% reduction in impedance
was defined as the limit to acceptable reduction based on previous
experiments using confluent cell monolayers for toxicity testing
(Curtis et al., 2009a,b; Brennan et al., 2012). For the system to be
sensitive to chemical toxicity, a significant separation in imped-
ance between the healthy and affected cells needs to be estab-
lished and maintained. Cell lines that formed stable monolayers
for two weeks on the open well ECIS chips were then selected for
seeding in the enclosed fluidic biochips, which are used for the
field-portable ECIS-based toxicity sensor.

2.4. Cell seeding and storage on the enclosed fluidic biochip

Sterile fluidic biochips used in this study were purchased from
Applied BioPhysics (Troy, NY). The fluidic biochips were made from
two components; an upper polycarbonate layer with two separate
fluidic channels (manufactured by Biosentinel Inc., Austin, TX), and
Table 2
Suitability of cell lines for use in the ECIS based biosensor.

Animal group, cell line designation &
animal origin (common name)

Preferred

Invertebrate cells SF9: fall armyworm Concanav
HvAM1: tobacco budworm Concanav
Sua1B: mosquito Concanav
S2: fruit fly Concanav

Vertebrate non-mammalian cells FHM: fathead minnow Collagen
ICR134: northern leopard frog Fibronec
GL-1: gecko Collagen
IgH-2: green iguana Fibronec
WECF11e: walleye Gelatin

Mammalian cells 15P-1: mouse Fibronec

a All adhesion substrates purchased from Sigma-Aldrich (St. Louis, MO) except fibron
b Formation of stable monolayer in this report is defined as less than a 20% reduction
c Variable impedance readings.
d Stable impedance readings over 1000 ohms only achieved at 20 �C storage temperat
a lower electronic layer that contained four electrode pads (each
electrode pad contained ten 250 lm diameter electrodes) per
channel). Fluidic biochip design information is described in detail
by Curtis et al. (2009b). Fig. 1 shows a picture of a fluidic biochip
seeded with cells and enclosed with sterile PharMed� BPT biocom-
patible tubing (Saint-Gobain Performance Plastics, Akron, OH).

For cell testing on the fluidic biochips, the chips were first
coated with selected adhesion substrates. The preferred substrate
for each cell line is listed in Table 2, and this was previously deter-
mined by screening the cells on multiple substrates during the ECIS
open well experiments. Cells were seeded at densities of 2–5 � 105

cells/ml, depending upon the cell type. Sterile PharMed� BPT was
used to form closed loops on the ends of the biochips. The seeded
biochips were stored at the optimal growing temperature for the
cells (listed in Table 1), and fed with growing medium 3� a week
over a 1–2 week initial feeding period to allow the cells to form a
confluent monolayer inside the biochip. The chips were then
placed in different temperature environments to examine long-
term (>90 days) cell viability. The cells in the fluidic biochip were
not fed during the maintenance period. Viability of the monolayer
was determined by monitoring impedance values over the storage
time. Different temperature environments were created by using a
lab refrigerator (6 �C), a Fisher Scientific Isotemp refrigerated incu-
bator (20 �C), and a Barnstead Thermolyne Type 37900 culture
incubator (33 �C, 36 �C, and 37 �C). The 25 �C degree environment
was the average daily temperature in the laboratory.

The GL-1 cells (ATCC #CCL-111) were originally isolated from
Gekko gecko (Cohen and Clark, 1968). The optimal core body tem-
perature of this lizard is 26.8–27.8 �C, with a tolerable range of
18.2–35.6 �C (Stokes and Meek, 2003). The GL-1 cells seeded in
the biochips were incubated at 6, 25, or 33 �C to determine the
optimal environmental temperature for cell storage.

The IgH-2 cells (ATCC #CCL-108) were originally isolated from
Iguana iguana (Clark et al., 1970). The organism has a range of doc-
umented core body temperatures from 24.5–43.1 �C (van Marken
Lichtenbelt et al., 1997). The IgH-2 cells seeded in the biochips
were incubated at 6, 20, 25, or 36 �C to determine the optimal envi-
ronmental temperature for cell storage.

The WECF11e cells were isolated from Sander vitreus (walleye;
isolation described here). With walleye, the upper incipient lethal
temperature is 34 �C for sub-yearling fish (Wilson and Nagler,
2006). The lower incipient lethal temperature is less certain, 6 �C
has been suggested (Hokanson, 1977), but spawning occurs
between 3 and 10 �C (Wismer and Christie, 1987). The WECF11e
cells seeded in the biochips were incubated at 6, 20, 25, or 37 �C
to determine the optimal environmental temperature for cell
storage.
substratea Formation of stable monolayer
yielding a high impedance (>1000 ohms)b

Promise in a
portable biosensor

alin A No No
alin A No No
alin A No No
alin A No No

I Yes Noc

tin No No
I Yes Yes

tin Yesd Yes
Yes Yes

tin Yes No

ectin and collagen I, which were purchased from Calbiochem (San Diego, CA).
in impedance values over a 2-week storage time in open well ECIS chips.

ure.



Fig. 1. Fluidic biochip enclosed with tubing. The biochip is seeded with cells using
tubing shown and stored for extended periods of time without medium replace-
ment at desired temperature and with no exogenously-supplied CO2.
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2.5. Impedance measurement with ECIS

Impedance measurements of cells on the open well chips and
fluidic biochips were monitored using the ECIS 1600 analyzer (Ap-
plied BioPhysics, Troy, NY) as previously described by Curtis et al.
(2009a).
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Fig. 2. Impedance readings of FHM cells stored in fluidic biochips at different
temperatures. The impedance data is represented as the mean ± SEM of 8 separate
electrodes on a fluidic biochip.
3. Results

3.1. Cell storage in open well ECIS chips

Table 2 summarizes the cells performance in open well ECIS
chips. None of the invertebrate cells could form a monolayer that
yielded impedance values greater than 1000 ohms. The HvAM1
cells had the highest impedance values (900 ohms) of all the inver-
tebrate cell lines tested, but the cell monolayer became clumpy
over the 2-week period, causing the impedance values to drop.
The adhesion substrates fibronectin and poly-D-lysine were also
evaluated with the invertebrate cells, but for all four invertebrate
cell lines the concanavalin A (lectin extracted from the jack bean)
supported the strongest cell attachment and highest impedance
readings.

The five vertebrate non-mammalian cell lines were each chosen
because of their ability to be maintained at different temperatures
and their lack of requirements for exogenously supplied CO2 for
cell growth and maintenance (detailed in Table 1). As summarized
in Table 2, all the vertebrate cell lines formed a stable monolayer
on the open well ECIS electrodes yielding high impedance values,
except the ICR134 cell line from Rana pipiens. These cells initially
formed a stable high impedance monolayer, but because they were
not contact inhibited, the cells began to layer on top of one an-
other, which resulted in decreased impedance. The IgH-2 cell line
from Iguana iguana was not stable for 2 weeks in the open well
chips when incubated at the ATCC recommended growing temper-
ature of 25 �C, but was stable at an incubation temperature of
20 �C.

The 15P-1 cell line, (Sertoli cells isolated from the testis of Mus
musculus) was the one mammalian cell line included in this study
because of its ability to be stored at temperatures other than 37 �C.
The 15P-1 cells are normally grown in Dulbecco’s Modified Eagle’s
Medium with 10% FBS in a 5% CO2 environment. To reduce the stor-
age requirements of the 15P-1 cell line, the cells were slowly
adapted to Leibovitz’s L-15 with 10% FBS, which is a CO2 indepen-
dent medium. The 15P-1 cells were stable for 2 weeks at the opti-
mal growth temperature (32 �C) and also at room temperature
without the addition of exogenously added CO2. Cell lines that
could form stable confluent monolayers on the open wells were
then evaluated for long-term survival on the enclosed fluidic
biochip.
3.2. Cell storage in enclosed fluidic biochip

Of the five cell lines screened in the fluidic biochip (FHM, GL-1,
IgH-2, WECF11e, and 15P-1), only three of the cell lines could form
stable monolayers (GL-1, IgH-2, and WECF11e). The FHM cells sur-
vived in the fluidic biochip for 90 days at temperatures of 12, 20
and 25 �C, but the impedance readings were highly variable as
illustrated by the large standard error of mean (SEM) values
(Fig. 2). The variability in impedance values during storage makes
the FHM cells unsuitable for consistent toxicity detection. The 15P-
1 cells were an unusual mammalian cell line because they could be
stored at room temperature with no exogenously added CO2, and
they had impedance values above 1000 ohms. There was a 20%
reduction in impedance values, however, over the two week mea-
surement period, which lessens the likelihood of long-term cell
viability and consistent toxicity detection. The three cell lines that
showed promise in the fluidic biochip were tested further to char-
acterize the stability of the monolayers over a range of storage
temperatures.

Long-term (>90 days) storage of cells in the enclosed fluidic bio-
chip, with no gas or medium changes, has special challenges
including lack of oxygen and build-up of CO2 and other cellular
waste products that can impact cell health. Both lactate and
ammonia accumulation has been shown to limit cell health in
long-term cultures (Hassell et al., 1991). To optimize the longevity
of the cells in the enclosed fluidic biochip without media replenish-
ment for an extended period of time, we specifically chose to use
Leibovitz’s L-15 (Lonza, Carlsbad, CA) without L-glutamine. This
medium was chosen for long-term storage of cells because galact-
ose is used as an energy source instead of glucose. Galactose is
preferable because it has been shown to decrease the production
of lactate, and thus slow the drop in medium pH over time (Alta-
mirano et al., 2000). This medium was free of L-glutamine, and
was supplemented with GlutaMAX (Life Technologies, NY) which
has been shown to decrease ammonia production in long-term
cultures.
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Fig. 3 shows the impedance readings of the Gekko gecko lung
epithelial cells (GL-1), Iguana iguana heart epithelial cells (IgH-2),
and the Sander vitreus fin epithelial cells (WECF11e) over at least
a 90 day period in enclosed fluidic biochips stored at different
temperatures. The impedance data shows that each cell line has
a preferred storage temperature that allows the cells to be stored
long-term in the enclosed fluidic biochip with no medium replen-
ishment. The GL-1 cells displayed stable impedance readings over
the measurement period when stored at 25 �C; however, when the
cells were stored at 6 or 33 �C there was a quick drop in impedance
readings. The IgH-2 cells displayed stable impedance readings over
the measurement period when stored at 20 �C; however, when the
cells were stored at 6 or 36 �C there was a quick drop in impedance
readings. IgH-2 cells stored at 25 �C were stable for 10 days before
impedance values began decreasing. The WECF11e cells displayed
stable impedance readings over the measurement period when
stored at 6 �C. Storage of the cells at 37 �C caused a quick decrease
in impedance values; whereas storage at 20 �C or 25 �C caused a
slow decrease in impedance values over the maintenance period.
Fig. 3. Impedance readings of cells stored in fluidic biochips at different temper-
atures. The impedance data is represented as the mean ± SEM of 8 separate
electrodes on a fluidic biochip.
4. Discussion

Interestingly, for all three cell lines that could be stored on the
fluidic chip, the optimal long-term maintenance temperature was
at the lower end of the organism’s core temperature. This data sug-
gests that a reptilian cell line stored at 20 �C or 25 �C, and a cold
water fish cell line stored at 6 �C are able to survive in the enclosed
biochip environment with no medium replenishment because the
metabolism of the cells is low, which would result in a decrease in
the production of waste products that can negatively impact cell
health. Ectothermic animals, unlike endothermic animals, have a
fluctuating body temperature and metabolism based on the envi-
ronmental temperature. Thus, at low environmental temperatures,
the ectothermic animal has very little energy requirements and is
in a hypometabolic state. The relationship between metabolism
and temperature in the ectothermic cell line makes it an ideal can-
didate for field portable sensors. The cells can be very easily stored
at low temperatures in a hypometabolic state, and then the tem-
perature can be raised when the cells are required for toxicant
testing.

It was determined in this study that each cell line has very spe-
cific temperature requirements to allow long-term storage on an
enclosed biochip. From the data presented here, it seems likely that
other cell lines isolated from ectothermic animals will store well in
the enclosed fluidic biochip at temperatures in the low end of the
organism’s range. Other cell lines from the rainbow trout (RTgutGC
(Kawano et al., 2010) and RTL-W1 (Lee et al., 1993)), which are de-
rived from the intestine and liver, respectively, have been shown to
survive for 9 months on the fluidic biochip at 6 �C with no media
replenishment, and still respond to toxicant challenges using ECIS
(unpublished data, USACHER, 2012). This data supports the idea
that different cells from the same organism (in this case the rain-
bow trout) have storage temperatures that are similar and in align-
ment with the whole organism’s core temperature. This type of
information may help facilitate the selection of cell lines for spe-
cific testing platforms and environments. Currently, the rainbow
trout gill epithelial cells (RTgill-W1) are the preferred cell line in
the ECIS-based toxicity sensor because of refrigerated storage
(6 �C) capabilities and chemical toxicant detection (Brennan
et al., 2012). Exploration of other candidate cell lines will allow
the ECIS-based toxicity sensor to have flexibility in the field. If
6 �C storage is not available, then cell lines with different optimal
storage temperatures could be utilized and tailored for the testing
environment. It has been shown that fish and reptilian cell lines
have toxicant sensitivities comparable to mammalian cell lines
(Brennan et al., 2012; Curtis et al., 2009a); indicating that a wide
variety of vertebrate cells could be used as accurate predictors of
human toxicity.

Future planned research will determine the chemical toxicant
sensitivity and response time of the GL-1, IgH-2, and WECF11e
cells using ECIS. These cells may increase the range of chemicals
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currently detected by the RTgill-W1 cells, which would add value
to the ECIS-based toxicity sensor.
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